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This paper presents a Bayesian method which can simultaneously combine
basic event and statistically independent higher event-level failure data in fault
tree quantification. Such higher-level data could correspond to train, sub-
system or system failure events. In fact, because highest-level data are usually
available for existing facilities, the method presented here allows such data to
be propagated to lower levels. The method has two stages: (1) a top-down
propagation scheme which allocates the higher event-level information to the
basic events, at a cost of making them dependent; and (2) a scheme for
sampling the probabilities of the dependent basic events. A simple example
illustrates the performance of the method. © 1997 Elsevier Science Limited.

1 INTRODUCTION

Vesely et al. [1], the probabilistic risk assessment
(PRA) procedures guide [2], and many other
textbooks, discuss fault tree quantification. Such
" quantification consists of three steps: (1) determining
the basic event probabilities, - (2) calculating the
minimal cut set probabilities, and (3) determining the
system (ie., the top event) probability. A simple
modification of the procedure produces a quantitative
measure of importance of the basic events, and some
of these importance measures are related to the
probability of system failure conditioned on the
occurrence of a basic event.

It is current and accepted practice in fault tree and
accident sequence quantification [as implemented, for
example, in the Systems Analysis Programs for
Hands-on  Integrated - Reliability  Evaluations
(SAPHIRE) [3] package Integrated Reliability and
Risk Analysis System (IRRAS) [4, 5] program] to use
only statistical data and information regarding the
basic events. Furthermore, it is presently impossible to
directly use independent statistical data and informa-
tion corresponding to higher-level events or gates in
the tree, despite the fact that normal operation and
testing procedures often generate these data for many
high-level gates including those corresponding to such
events as train, subsystem, and system unavailability,
and even the top event itself. In quantifying the
accident sequence frequency for a proposed accident
of interest at an existing facility, independent
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statistical data almost always exist at the highest level;
namely, x occurrences of the accident (where x is
often 0) in a given exposure time ¢ or in n demands.

By ‘independent’ we mean that the higher-level
data for a system are not simultaneously providing
collateral information on the basic events comprising
that system (which would lead to double counting and
thus dependency). In other words, we assume that the
higher-level and any basic-event data are not the
result of the same set of demands or observation
period. This is usually the case for any system test that
is destructive, such as a missile fired at a target. If the
same higher-level data provide basic event-level
information, then we can instead use such data to
verify the structure of the fault tree. In particular, any
higher-level failure data which is not predicted by the
fault tree is an indication that the fault tree model is
inadequate. '

In addition to higher-level statistical test data, - -

independent industry-wide statistical analyses are
sometimes performed on safety systems considered in
a PRA. Such analyses represent a source of generic
higher-level statistical information for the specific
plant under consideration. For example, Grant et al.
[6] describe an industry-wide statistical analysis of the
safety-related performance of the high-pressure
coolant injection (HPCI) system at US commercial
boiling water reactor plants for the period 1987-1993.
If we had a fault tree quantification method capable of
utilizing such higher-level information, then the
results of such analyses effectively represent an
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additional independent source of statistical inform-
ation supplementary to any plant-specific basic
event data. .

This paper describes a Bayesian method which can
simultaneously combine basic event and independent
higher-level failure data and information in fault tree
quantification. The obvious advantage is the as-
sociated increase in accuracy and precision of the
probabilistic results because of the combined use of
these data. However, there is another important but
somewhat less obvious advantage. The method will
provide us with the opportunity to compare two
independent estimates for the gate-level probability:
one based on the gate-level data and one induced by
the logical model of the gate and the associated basic
event and/or gate-level data below it in the tree. Such
a comparison represents a direct quantitative evalua-
tion of the adequacy of the logical model and data for
the gate in question; thus, the method is useful for
model validation.

1.1 Related methods

Several authors consider the combined use of both
component and independent system-level test data in
reliability analysis. Easterling and Prairie [7] develop
classical maximum likelihood estimators of series or
parallel system reliability using both types of data;
however, their method is quite restrictive in that the
components must be both independent and identical.
Mastran [8] considers Bayesian estimation of system
reliability in which there exist test data at both the
component and system levels for both binomial
pass/fail and exponential time-to-failure data for a
series system of nonidentical components. He uses a
top-down approach which apportions the posterior
system reliability distribution to each component in
the form of a component prior distribution consistent
with the series configuration. Combining these
component priors with the component level data
(using Bayes’ theorem) produces component posterior
distributions. Propagating these component posteriors
- back up to the system level using the series model
forms the final system posterior from which the
desired inferences are obtained. Mastran and Sing-
purwalla [9] extend the method to include any
coherent system, and Barlow [10] likewise also
considers a Bayesian method for combining both types
of data.

Martz et al. [11] develop a Bayesian procedure for
estimating series system reliability that permits the use
of both types of data at the component, train,
subsystem, and system levels. Martz and Waller [12]
extend the method to include an arbitrarily complex
system configuration of series/parallel subsystems of
other subsystems or components. Martz and Baggerly
[13] further extended the method to accommodate
Poisson as well as binomial data at any level in a
complex series/paralle] system.
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Hulting and Robinson [14] consider pass/fail data,
lifetimes of nonrepairable components, and repair
histories for repairable subsystems at any level in a
series system. They consider a censored Weibull
model for the pass/fail data, a Weibull model for the
lifetime data, and a power law process model for the
repair data. They also express informative component
prior information by means of a conjugate weighted-
gamma family of prior distributions. They use their
method to estimate the reliability of a new automobile
vehicle system in the early stages of development.

When both levels of data exist for the same
demands or observation period, the above methods
are inapplicable because the data are dependent. For
example, a standby syster may fail to operate upon
demand (a higher-level system failure) which may
subsequently be traced to the failure of a particular
component in the system (a basic event-level failure).
However, the above methods (and the method
presented here as well) are still applicable if only one
level of data is used. Using the data at the higher-level
gate to form an aggregated posterior for the
higher-level event produces an aggregate analysis.
Using the data at the basic event-level to form a
disaggregated posterior for the higher-level event
produces a disaggregate analysis. Usually, the
aggregate and disaggregate posteriors will disagree, in
which case we say that an aggregation error occurs.
Very large aggregation errors are grounds for
suspicion of the structure of the fault tree model.

Bier [15] and Azaiez and Bier [16, 17] develop
necessary and sufficient conditions (which are
extremely stringent) for perfect aggregation (that is,
no aggregation error) for several classes of reliability
models. They also demonstrate why analysts must be
careful in choosing the level at which to use such
dependent data and argue that, when accurate
disaggregate data, prior distributions, and reliability
models are available, concerns about aggregation
error favour using a disaggregate analysis. Bier [15]
and Azaiez and Bier [16, 17] provide additional
information and insight regarding this important
decision.

1.2 Brief overview of the method

All of the above methods place restrictions on either
the structure of the system or the distribution of the
probabilities of the basic events. In Mastran and
Singpurwalla, [9] this restriction is the subtle one that
component level information can be expressed by
independent data. In contrast, the method presented
here does not rely on specific distributional assump-
tions regarding the basic or higher event-level
probabilities. We assume that the information about
the probability of occurrence of each basic event can
be summarized with a probability distribution with
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known mean and variance from which we can draw
values. The method describe here will even properly
handle a priori state-of-knowledge (SOK) dependence
among the basic events; all that is necessary is a
method for sampling their joint distribution. Similarly,
the method requires that the higher event-level data
or information reside in the form of a distribution of
the probability of occurrence of the higher event with
known mean and variance from which we can likewise
randomly sample. In the case of higher-level data, this
could be a posterior distribution derived from either
an informative or noninformative prior.

The primary part of the method described in this
paper is an algorithm for allocating the higher-level
~ information to the basic events according to the
importance of each basic event. The allocation
algorithm provides both a mean and a variance for the
allocated information. The final basic event prob-
ability is a mixture of the original and allocated event
information, using the precisions of the basic event
probabilities (inverse variances) as the mixing weights.
Propagating the basic event mean occurrence
probabilities up to the higher event-level gate pro-
duces a new gate-level mean occurrence probability.

The higher-level gate mean occurrence probability
is a biased estimate because it does not take into
account SOK dependence among the basic events.
Even if the original basic event distributions were a
priori SOK independent (for example, no common
correlation classes), the allocation algorithm induces a
SOK dependence among the basic events. This is easy
to see because, after the allocation, the knowledge
about each basic event depends on the common
information at the higher-level gate.

The second part of this method is an algorithm for
sampling from the joint distribution of basic event
probabilities which accounts for the SOK dependence.
It consists of sampling the basic event probabilities in
the normal way and adding a simple adjustment for
the higher event-level information. This second
algorithm is used in a simple Monte Carlo procedure
to produce unbiased estimates of the higher-level gate
mean occurrence probability.

A model for using independent higher-level failure
data in any coherent fault tree is presented in Section
2. Section 3 illustrates the performance of the method
using a simple fault tree example, and Section 4
discusses the strengths and limitations of the
procedure based on our experience with it.

2 A MODEL FOR USING HIGHER-LEVEL
FAILURE DATA

We consider a top-down approach which apportions -

the higher-level data down the fault tree to update the
basic event probabilities so that the combined basic
event probabilities reflect both their initial values and
the higher-level data. In this sense, the higher-level

data induce changes in the basic event probabilities
that reflect the higher-level data. This approach
implicitly assumes that the structure of the fault tree is
correct. Even in cases where this assumption does not
hold, the combined basic event probabilities should
produce better estimates of the higher-level gate
occurrence probability (in the sense that it will be
more consistent with the higher-level data) although
the combined basic event probabilities will not
necessarily be better estimates of the individual basic
event probabilities.

While a corresponding bottom-up approach, in
which the probabilities of the higher-level events
would be updated, could be used, there are several
reasons why we prefer the top-down approach. First, a
top-down approach requires that event data be
maintained (and subsequently updated) only at the
basic event-level of the tree, a procedure that is
consistent with all existing fault tree quantification
software. Thus, the top-down approach is relatively
easy to integrate into existing software. Second,
because the basic event probabilities ultimately reflect
all of the combined data, these probabilities
dynamically represent the most current SOK avail-
able. Because such data are uniformly maintained at
the lowest possible level, it can be directly used to
estimate the unavailability of other systems, including
those not appearing in the current fault tree. Third, in

. those cases in which informative subjective assess-

ments of system unavailability are to be incorporated
at only one level in the analysis (that is, informative
prior distributions are to be considered at either the
higher or basic event-level of the tree—but not both),
we believe that such priors are more meaningfully
assessed at the higher event-level. Mastran [8] and
Mastran and Singpurwalla [9] agree and likewise
consider a top-down approach.

Once we have updated the basic event probabilities

“to reflect the higher-level data at a given gate, we can

then propagate these combined probabilities back up
the fault tree to update the gate probability of
occurrence. This probability estimate likewise reflects
both the initial basic event-level data as well as the
higher-level data at the gate. We then iterate this
procedure, sequentially updating the basic event-level
probabilities, until all the gates for which there exist
higher-level data have been considered. Finally, we
then propagate the final updated basic event-level
probabilities through the fault tree to obtain the
required estimate of the higher-level gate probability
of occurrence. The details for accomplishing this are
described below.

This procedure requires that there exists a posterior
SOK uncertainty distribution of the probability of each
basic event involved in the updating process (that is,
those basic events contributing to the probability of
the higher-level gate). This is a Bayesian approach
based on the assumption that SOK uncertainty



32 H. F. Martz, R. G. Almond

distributions of the parameter(s) of the corresponding
model induce a corresponding SOK uncertainty
distribution on the probability of occurrence of the
basic event. This posterior distribution may be
computed directly from the posterior distributions on
the model parameters which are required when
performing an uncertainty analysis. We further
assume that the SOK posterior distribution for each
basic event has a known mean and variance.

The procedure similarly requires that the failure
information at the higher-level gate be expressed as an
independent SOK probability distribution with known
mean and variance on the higher-level gate probability
of occurrence. For example, if the higher-level
information consisted only of plant-specific statistical
surveillance and/or operating performance data, the
higher-level information would be used to construct a
posterior distribution using a noninformative prior. If
the independent information is the result of an
independent system analysis (such as an industry-wide
system performance analysis as in Grant et al. [4]),
then it would be summarized as an informative prior
distribution for the probability of the gate. If both
types of information are available, the independent
analysis could be used to determine an informative
prior and the resulting posterior would become the
SOK probability distribution for the gate. All that is
required is that the information sources used in
forming the SOK distribution for the higher-level gate
occurrence probability be independent of the informa-
tion used to form the SOK distributions of the
probabilities of the basic events. Any type of
probability model, such as those based on the
binomial or Poisson distribution, can be used,
provided that the model used ultimately produces a
probability as output. As in the case of the basic
events, we require the final SOK posterior distribution
of the gate probability along with its mean and
variance.

The use of higher-level data usually induces a SOK
dependence between the basic events affected by the
higher-level data. This dependence is a consequence
of using the common higher-level data by all the basic
events affected by the higher-level data. However,
cases exist in which the common use of dependent
data doesn’t necessarily induce SOK dependency (see
Haim [18]). Thus, depending upon the data, the SOK
dependency structure, and the importance of the basic
events to the gate for which the higher-level data
exist, such dependency may or may not be important
to consider. However, to the extent that these
dependencies exist, the method to be presented
recognizes and preserves such induced stochastic
dependence among the basic events. Apostolakis and
Moieni [19] also discuss SOK dependence in PRA,
particularly with regard to common cause failures.

If the same data set is used for a group of similar

basic events (or components), then this common usage
induces a SOK dependence (or correlation) between
the basic events in the group. For example, suppose
that a plant has two motor-driven residual heat
removal pumps. These pumps are virtually identical,
and therefore are modeled as having the same
probability of failure to start on demand p in the
model. Often, the same data sources contribute to the
uncertainty distribution for p for each pump, yielding
an identical SOK distribution for p for each pump. In
this case, a SOK dependency exists between the two
pump failure basic events, and the SOK uncertainty
distributions for the two values of p are perfectly
correlated. This SOK dependency must be distin-
guished from basic events in which such SOK
dependency does mnot exist. It is common PRA
practice to accommodate such SOK dependency by
using the same uncertainty distribution for the group,
a practice known as defining a correlation class. When
a probability is sampled from its SOK uncertainty
distribution, that same value is assigned to all the

~ basic events in the class. The method presented below

recognizes and permits the use of correlation classes.

Before presenting the method, we introduce some
general notation and assumptions. We denote the
basic events in the fault tree as Bj; thus, j is used as a
basic event index. We denote the gates at which we
have higher-level data or information as Si, i =1, 2,
.., m, where m=1; thus, { is a gate index. Two
subscript styles denote gates and basic events: ‘Si’
refers to gate Si, and 4’ (without a capital letter)
refers to basic event Bj. Each basic event and gate has
a corresponding random event which we also denote
as Bj and Si. Thus, P(Bj) = p; and P(Si) = pg; indicate
the probability of the basic event Bj occurring and a
pattern of basic events occurring such that the gate Si
occurs, respectively. ' '

The method given below absorbs the higher-level
data one gate at a time, and the ordering of the gates
Si, i=1, 2, .., m, is the order in which the
higher-level data are absorbed. We note here that the
procedure works no matter what ordering is chosen;
however, we recommend that the data at the
lower-level gates be absorbed first.

When absorbing the higher-level - information at
gate Si, the method uses two different types of
random variables—those random variables produced
via a mixture combination at gate Si (representing
cumulative information) and those random variables
not involving a mixture combination at gate Si
(representing incremental information). We use the
superscript “*(i)’ to denote random variables based on
mixture-combination involving the higher-level data at
gate Si and the superscript ‘ + (i)’ to denote random
variables that are not mixture-combinations involving
the higher-level data at gate Si. For example, pf®
denotes the combined (cumulative) probability of
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basic event Bj at gate Si which reflects the initial basic
event data as well as all the higher-level data from
gates S1, S2, ..., Si, while p}® denotes the non
mixture-combined (incremental) probability of gate Si
based exclusively on the higher-level data at gate Si.
Distinguishing between these two types will become
more clear when the details of the model are
presented below. .

In addition to the fault tree structure, the method
assumes the existence of the following random
variables: (1) the initial (before absorbing higher-level
data) probability p¥©@ that Bj occurs (these may be
dependent random variables if there is an initial SOK
'dependence; for example, that due to common
correlation classes), and (2) at least one independent
higher gate-level probability p(’. The assumption of
independent higher-level probabilities says that p3?'s
are mutually independent, and that these are all
mutually independent of the pF©®'s.

The approximate probability of gate Si may be
calculated from the vector of individual basic event
probabilities, p, using any number of exact or
approximation methods such as the rare event
approximation [3], the minimal cut set upper bound
approximation [3], or a direct exact calculation
scheme. Note that the first two methods require the
minimal cut sets, which has some computational
advantage because we can eliminate any event which
does not appear in a minimal cut set from
consideration. Let Si[p] denote the approximate
probability of gate Si calculated using the most
appropriate of these two approximations. The
procedure below evaluates Si[+] at randomly sampled
as well as mean values of p. The method described
below also requires the probability of gate Si
conditional on the occurrence of basic event Bj, or
equivalently, conditional on p;=1. We denote this
conditional probability as Si[p|1;].

Many importance measures are available for
assessing the influence (or importance) of each basic
event to the approximate gate probability. One of
these is the risk increase ratio (RIR [3]). RIR is an
indication of how much the approximate gate
probability would increase if the basic event occurred
with probability 1.0 (that is, if the corresponding
component failed). RIR is determined by calculating
the approximate gate probability with the basic event
probability set equal to 1.0 and dividing this quantity
by the approximate gate probability calculated with
the basic event probability set to its true value. In
equation form, the RIR for basic event Bj at gate Si
based on the vector p*?®, with elements p}®, is
denoted by RIR}” and is given by

RIR}O = P(Si|Bj)/P(Si) = Silp*®|1,)/Sifp*®], (1)

where p*@|1; denotes the vector p* in which the
probability of basic event Bj is set to 1.0. We will have

occasion to evaluate eqn (1) both for a random
sampled vector p*® and its mean E[p*®). The choice
of RIR in the analysis below is not based on its use as
a quantitative measure of importance of Bj at gate Si,
rather, it provides a convenient method (already
supported by many fault tree analysis computer
programs) of calculating P(Si|Bj).

One final piece of notation is necessary to describe
the Monte Carlo sampling used in the algorithms. The
population expected value (mean) and variance of a
random variable are denoted by E() and Var(e),
respectively, while the covariance between two
random variables is denoted by Cov(e,*). The (Monte
Carlo) sample mean and variance of a set of data are
denoted by avg(*) and samvar(*), respectively, while
the sample covariance between two sets of data is
denoted by samcov(e,*). The subscript ‘n’ on a
random variable, in addition to a subscript j* or ‘Si’,
denotes a Monte Carlo sample value of the
corresponding random variable for the nth simulation

cycle.

2.1 Back-estimation of Bj

The top-down allocation of the higher-level prob-
ability of gate Si to the probabilities of the basic
events Bj affected by this gate is a key feature of the
model, and we refer to this as the back-estimation of
Bj. Let Si denote the event that Si does not occur.
Prior to using the higher-level data at gate Si, we
define

I;= P(Bj|Si) = P(Si,Bj)/P(Si) = RIR*‘~VP(Bj).
Similarly, we define
I = P(Bj|Si) = P (Si,Bj)/ P(Si)
=[1- RIR¥"-DP(Si)]P(Bj)/[1 - P(Si)].

By the law of total probability, we now consider ;
and /' as weights and apply these to the probability of
occurrence of gate Si based only on the higher-level
data, which we denote by p%(®, and its complement as
follows:

p} @ = P(Bj) = P(Bj|Si)P(Si) + P(Bj|S})P(S)
= [p3O+ 41 - p3®)
= p;;(i—l)[al(i) + bl(_i)p;-‘_(i)] 2)
where we have defined
a=[1 _p;(i-—l)RIR;k(i—l)]/[I fb.?i(i_l)]:
b{? =RIR¥ "1 — g,

@)

Equation (2) allocates (in a top-down manner) the
information in pg” to the basic event Bj. The
probability p;"® on the left-hand side of the equation
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denotes the information about Bj inherent in p3’
(given the weights I, and ['). Note that (2) uses
pEV=Si[p*"P] and pF Y, respectively, to
estimate P(Si) and P(Bj). Thus, p;/® and p}‘~" are
dependent estimates of the probability of Bj; this
dependence is considered below.

Three bounding cases provide insight into the
behaviour of this apportionment scheme. First, if basic
event Bj does not appear in any minimal cut set for
gate Si, then RIR¥“~ = 1.0, and we see from eqn (2)
that p; @ = p*¢=1; that is, p*@~" is unaffected by the
higher-level data. Second, if Bj is a minimal cut set for
gate Si, then RIR}™D =1.0/p%%"", and again using
eqn (2), we have p; @ =p*=Upt@/p¥G=1  Ip thjs
case, pF@~V is modified proportional to the ratio of
the probability of Si based on the higher-level data to
the probability of Si predicted from p*“~". Third, if
the probability of Si using the higher-level data agrees’
with the probability of Si predicted from p*“~; that
is, if pg®=p¥V then we again see that
PO =pte".

To further understand the performance of eqn (2),
Fig. 1 gives a parametric plot of the ratio
R=p}®D[p¥i~D a5 a linear function of the ratio
S=ps?fpED for RIR¥ D=1, 20, 40, 60, 80,
and 100. Also, we have set p%‘~1=0.01 for all the
lines in Fig. 1. In addition to the above bounding
cases, we see that there is a proportionately greater
change in p;® relative to p}¢"" as RIR}V
increases for Bj (that is, as Bj becomes more
important) for a given value of S. This supports our
intuition. Finally, as we decrease p%‘~" by successive
orders of magnitude and simultaneously increase both
RIR}“"D and S by this same factor, R simply changes
scale by this factor.

Similarly, Fig. 2 gives a parametric plot of R as
linear function of RIR*“~Y for values of § =0.1, 0.5,
1, S, and 10, where p%‘~V=0.01 is again used in
constructing Fig. 2. We see that, for a fixed
importance of Bj, R increases proportionally as S
increases. If we decrease p%‘~" by successive orders
of magnitude, simultaneously increase RIR}¢~" by
the same factor, and keep the same parametric values

R
100 . //
80 » ~— RIR=1
. : //// --= RIR =20
60 e "= RIR=40
' ~ —~ RIR = 60
40 // // -
— —- RIR=80
// - —
20 ///f// = RIR=100
g
WY ==Ll - S -
0 20 40 60 80 100

Fig. 1. The ratio R as a linear function of the ratio § for
selected values of RIR.

.

R o
10 //
8 e -~ S§=0.1
/ s
——S5=05
6 // 0
_ ——S5=1
/
4 / — ——5=5
// ///
— —-5=10
N
0 20 40 60 g0 100 NR

Fig. 2. The ratio R as a linear function of RIR for selected
values of the ratio S.

of § as in Fig. 2, then R remains the same as in Fig. 2.
That is, as long as RIR}‘"" increases and p%(¢-»
decreases by the same factor, there is no change in R
provided the ratio S remains constant.

2.2 Combined probability that Bj occurs

The probability p;"®” in eqn (2) is the portion of the .
higher-level event probability p%® which has been
allocated to basic event Bj at gate Si. In order to
obtain an updated probability of basic event Bj which
reflects all the data at gate Si, we need to combine h
p;® with the previously combined probability of Bj
from gate S(i—-1), p}“"". A commonly used
procedure for accomplishing this is to form a mixture
(a weighted average) of both random variables with
weights inversely proportional to their respective
variances.

Define the precision, 7, of a random variable to be
the reciprocal of its variance; thus, 1}@=
1/Var[p;/®]. The weighted average for combining
PV and p;*@ is the random variable given by

prO=[-wPpéV +wipo, (4)
where the weight w( is defined as
WP = 1O gD 4 0] )

The mean and variance of eqn (4) are
E[prO] =[1- wE[p}¢ 1 + wlE[p;®]  (6)
and
Var[p}©] = [1 - wfPVar[p}@~] + [wf"*Var[p; "]
+2wP[1 = wfCov[p}", p} ) =1/23®. (1)

Note that p}“~" and p;® are dependent by virtue
of eqn (2)—hence the covariance term in eqn (7).
Also note that, if p}“~" and p%® were independent,
eqns (6) and (7) would be the Bayesian posterior
mean and variance when estimating the mean of a
Gaussian distribution with a Gaussian prior where
E[p;®¥] and E[p}‘~V] are the sample and prior
means, respectively.
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2.3 Mean, variance and covariance of p3®

Equations (4)-(7) requ1re estimates of E[p;/"],
Var[p; ] and Cov[p}¢~", p/?]. Because eqn (2) is
an extremely complex function of all the random
variables p}¢~V, j =12, ..., it is virtually impossible to
analytically determine these moments. Further,
because pFi~Y, j=12, .., are correlated, it is
extremely complicated to approximate these moments
using the usual error propagation formulas for a mean
- and variance of a general function of several random
variables discussed in Section 2.4 below.

Because of these difficulties, we use Monte Carlo
simulation to determine E[p;®)], Var[p;®] and
Cov[p}¥~D, p/®]. The procedure absorbs the
higher—level information one gate at a time, at each
time for gate Si for i=1,...,m. At each step, the
procedure requires only the ability to simulate from
the joint SOK distribution of p*“~V. For p* this is
just the ordinary simulation which would be used in an
uncertainty analysis of the fault tree (before absorbing
the higher-level data). For i >1, Section 2.5 describes
the simulation procedure:

Step 1: Calculate minimal cut sets for gate Si

All basic events which do not appear in any of the
minimal cut sets can be treated as fixed.

Step 2: Calculate mean and variance using gate Si
higher-level data

E[ps®) -
Var[p“]

Step 3: Begin Monte Carlo simulation
For each cycle n:

Step 3.1 Draw probability p}¢~" for each basic
event Bj (Section 2.5 describes how to generate
these)

Step 3.2 Calculate probability of gate Si, p3¢ "=
Si[p¥“~"], where p¥‘~" has elements p*“ n

Step 3.3 Calculate RIRX¢~" for each basic event
Step 3.4 Draw probability p3!) from the SOK
posterior distribution of the probability of gate Si
based on the higher-level data

Step 3.5 Calculate back-estimate of basic event
probability, p}{ using eqn (2).

Accumulate sums over n for:

a(r) = [1 P*z(;. I)RIR*(’ ')]/[1 P*,(' 1y
b(" = RIRX(™ — a,(') .
p; (:)_p*(: ')[a(‘) + b(t)P+l('tl)]
*("'){a(‘) + b(’)E[p +(')]}
+(1)p*(z—
(P2 Dlal + bPE[pEOT)Y
(A blVarp30).

Step 4: For each basic event Bj, calculate and store:

A = ave[a{)]
B0 = avelsf]

v calculate Cov[p}*-

(We will need these for all i in Section 2.5 below.)

We can now calculate E[p;/®] and Var[p;©] by
noting that p;” in eqn (2) is a function of both the
random vector p¥“~" and the random variable p#®.
Using the well-known conditional mean and variance
formulae; namely, E(y)= E[E(y|x)] and Var(y)=
Var[E(y|x)] + E[Var(y|x)], we have

E[pj @) ~ave(p}i a2 + bRE[P:)  (8)
and
Var[p; @] ~samvar(p}{~"{af) + bOE[p3 1)
+ ave([p2¢bEPVarlpi®). ()

Once eqn (8) has been calculated, we can then
-}-(i)] as

(,)] ave(p;Ppxi-v)
~ E[p/®IE[p}¢ ], (10)

where E[p¥‘~V] is given by eqn (6) for gate S(i — 1).
Note that eqns (8)-(10) are only approximations due
to Monte Carlo sampling error. Using eqns (8)-(10),
we can now calculate eqns (4)-(7) for gate Si.

Cov[p}¥¢~1),

2.4 Updated approximate mean and variance of the
probability of gate Si

After we have calculated the means and variances of
the combined basic event probabilities p}® in eqn (4),
we can then propagate these back up the fault tree to
update the mean and variance of the probability of
gate Si. To do this we use the approximation formulae
for the mean and variance of any function g(x;, x,,...,

x,) of n random variables x;, x;,..., x,,. Expanding g(*)

in a Taylor series about the mean values of the
random variables and then truncating the series at the
linear terms (see Ang and Tang [20], Section 4.3.4)
produces a first-order approximation for the mean
occurrence probability of gate Si:

E[p¥?”]~ S{E [p**1}, (1)

where E[p*] is a vector of expectations whose
elements are given in eqn (6).

The variance of p¥” may likewise be approximated
by using the corresponding variance formula. Using
this formula, a first-order approximation for the
variance of the occurrence probability of gate Si
becomes

; E[p#][RIR}? —1])?
wsr-3] |
P = 2 e
E[p¥7[RIR*" —1]
><Var ¥} 4 { L }
1+ 2 2= Epry
E[p*(’)][RIR*(i) -1 ; ;
{ 1= E[pt ]}C°V[Pi-"‘ W (12)
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where RIR*? in eqn (12) is evaluated at its mean
E[p*?] and in which we have used the fact that the
required partial derivatives evaluated at the mean
values are given by
aSi ) : ) ;
ap}k(i) =S{E [P*Ollj]} - S{E [P*Oloj]}- (13)
We will examine the performance of eqn (12) in
Section 3.

2.5 Simulating from the distribution of p*®

Although the above results give proper marginal
means and variances for p}®, the joint distribution of
the basic event probabilities is now -SOK dependent:
all of the probabilities depend on the common
information about the gate Si. The approach is to
simulate from the dependent random vector p*®
(required in Step 3.1 of Section 2.3). First, sample
pH® as if there were no higher-level data (that is,
taking into account only the common correlation
classes of basic events). Second, as in Step 3.4 of
Section 2.3, sample higher-level data p 3 for k =1, 2,

., i, from the respective SOK posterior distribution of
the probablhty of gate Sk. Then, calculate p*& using
the expression

P*=pE 1 - Wi+ Wil + Bp )

(14)
where the constants w{), A®) and B®, k=1, 2, ..., i,
are all defined and calculated in eqn (4) and Step 4 of
Section 2.3. By using eqn (14), we approximately
preserve the implicit dependencies between the
elements of p*? because eqn (14) is an approximate
model for the relationship between p}® and the initial
probabilities p¥® using successive recursive applica-
tions of eqn (4) into which eqn (2) has been
substituted. Equation (14) is an approximation
because of the use of the averages A{*) and B from
Step 4 in Section 2.3.

3 EXAMPLE

We now consider the performance of the model in

Section 2 for a simple fault tree example which was:

used to illustrate IRRAS fault tree solution and
quantification in Appendix A of Russell et al. [3] It is
sufficient to examine the performance of the method
for the case in which higher-level data exists only for
the top event in the tree; thus, m = 1. The reason for
this is that, because of the hierarchical nature of the
model in Section 2, this case represents the
fundamental ‘building block’ for more complicated
trees for which there are higher-level data at multiple
gates within the tree.

A complete 2° factorial computer experiment is

designed and used in conjunction with the example to
examine the performance of the method as a function
of three factors: the strength of the basic event-level
data (strong or weak), the strength of the top
event-level data (strong or weak), and the degree of
agreement between the basic event and top
event-level data (agree or disagree). The results for
each of these cases are compared and used as a means
of assessing the performance of the model. Thus, we
consider all combinations of the three factors in the
following eight cases:

Case Basic Event- Top Event-Level Data

Level Data Data Agree?
1 Strong Strong Yes
2 Strong Strong No
3 Weak Weak Yes
4 Weak Weak No
5 Strong Weak Yes
6 Strong Weak No-
7 Weak Strong Yes
8 Weak Strong No

Figure 3 contains the example fault tree from
Appendix A of Russell et al. [3] for which there are
five minimal cut sets. If the basic events are
statistically independent, it follows from the rare event
approximation that the approximate probability of the
top event (or top gate) is S1(p) =p1*p2 + p1*p4 +
pl1*p3*p5 + p2*p3*p5 + p3*p4*p5, where pj = P(B)),
j=1, 2, 3, 4, 5. We further assume that our initial
SOK uncertainty about each true (but unknown)
value of pj is adequately modeled as a truncated
lognormal random variable p*® with mean E [p}©®)]
and 95% error factor (EF) EF¥®.

The basic event mean probablhtles of occurrence
for our example problem are those considered by
Russell et al. [3]; namely, E [p¥?]=0.01, E [p$?] =
0.02, E [p¥©]=0.03, E [p¥©]=0.04, andE[p*(°’]—
0.05. Unlike Russell et al. [3], we further assume that -
independent data also exist for the top event. In
particular, we assume that there exists an independent
source of data regarding the occurrence of the top
event which may be expressed as a truncated
lognormal distribution whose mean is either
SHE[p*™]} (that is, agreement between the means of
the higher and basic event-level data) or 30X
S{E[p*™]} (that is, disagreement between the means’
by a factor of 30). An EF of 2 is used here to define
strong basic and higher event-level data, while an EF
of 10 denotes weak basic and higher event-level data.
Also note that, for simplicity, the five basic events are
either all simultaneously strong or weak; mixed cases
are not considered.

In each of the eight cases, the method described in
Section 2 was used to calculate the combined-data
mean and variance of the probability of the top event.
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Example
T?P
{ 1
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GATEl GATE2
I | I ! 1
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Gate Gate No. 1 No. 3 No. 4
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OR Gate No. 3 No. 5 OR Gate No. 5
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B2 B4
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No. 3 No. 5 No. 1
B3 BS Bl

Fig. 3. Example fault tree.

In addition, two other estimates of the mean and
variance of the top event probability were calculated:
an estimate based only on the initial basic event-level
data (thus ignoring the higher event-level data) and a
direct estimate using only the top event data (thus
ignoring the basic event-level data).

Sections 2.4 and 2.5 provide two methods for
calculating the approximate mean and variance of the
probability of the top event. Because the former
method for variance calculation requires the computa-
tion of the covariances between updated basic event
probabilities [eqn (12)], the latter method is easier to
implement. Section 2.5 provides a method for
simulating p*" incorporating the SOK dependence
among the basic event probabilities. Taking the
sample mean and variance of S1[p*("] across a Monte
Carlo sample yields an estimate of the mean and
variance of the probability of the top event. These
estimates are subsequently referred to as the simulated
correlated mean and variance estimates.

Section 2.4 provides first-order approximation
formulae for the mean and variance of the top event
probability. Note that the variance calculation formula
(12) involves covariance terms. To assess the effect of
ignoring this dependence, we subsequently ignore the
covariance terms in eqn (12). In particular, propagat-
ing the estimates of E [p}®] and Var [p}¥] calculated
using eqns (6) and (7) (listed in Table 1) by means
of eqns (11) and (12) [ignoring the covariance terms
in eqn (12)] produces estimates of the mean and
variance of the top event probability. These are sub-
sequently called the approximate mean and variance
estimates.

Table 2 contains the mean and variance of the top
event probability calculated using both the simulated
correlated (with a 10,000 replication Monte Carlo
simulation) and the approximate estimation proce-
dures. The results in Table 1 provide the data needed
for both procedures, and Table 3 summarizes the
results. The estimated means and variances are in
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good agreement despite the fact that we have ignored
the covariances in eqn (12). Although in case 1 the
dependencies induced between the elements of p*
due to the common use of the top event-level data are
sufficiently small so that they can essentially be
ignored, this is not always the case, as we shall see
below.

Figure 4 shows the mean top event probability for
all eight cases using all three estimation methods. For
convenience, the values of the three factors for each
case are also shown at the bottom of Fig. 4. The
results for the combined data in Fig. 4 are all based on
the ‘simulated correlated’ estimates described above
and as illustrated in Table 2. The length of the
‘whisker’ extending above each bar in Fig. 4
represents the standard deviation associated with the
corresponding estimate; for example, Var'?[p#")]
associated with E [p%®]. Similarly, Fig. 5 contains the
corresponding results based on using the ‘approxim-
ate’ mean and variance estimates described above for
the combined data.

Upon examining and comparing Figs 4 and 5,

several things become apparent. First, consider Fig. 4.
If the initial basic event data are strong, then the
addition of top event data has little effect on the
variance of the top event probability (cases 1, 2, 5 and
6). On the other hand, if the initial basic event data
are weak, then the additional use of top event data
can have a significant effect on the variance of the top
event probability (cases 3, 4, 7 and 8), particularly so
when there is no agreement between the basic event
and top event data (cases 4 and 8). If one source is
weak while the other is strong and they don’t agree,
then the mean top event probability is an average of
the corresponding means for the two sources and
tends to be rather dramatically pulled towards the
mean of the stronger source (cases 6 and 8). The case
where both sources are strong but both disagree
should not be combined before first rectifying the
disagreement; otherwise, the variance of the top event
probability may be underestimated (case 2).

Now compare Figs 4 and 5. The mean top event
probabilities based on the combined data disagree in
Figs 4 and 5 when the initial basic event data are weak

B Basic Event-Level Data
B Top Event-Level Dala
B Combined Data
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Case 1 e 3 4 6 i 8

Basic Event-Level Data Strong Strong Weak Weak Strong Strong Weak Weak

Top Event-Level Data Strong Strong Weak Weak Weak Weak Strong Strong

Data Agree? Yes No Yes No

No Yes No

Fig. 4. A comparison of the mean top event probability using different data sources for eight cases based on correlated Monte
Carlo simulation for the combined data.
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Fig. 5. A comparsion of the mean top event probability using different data sources for eight cases based on mean and variance
approximation formulae for the combined data.

and both data sources disagree (compare cases 4 and 8
in Figs 4 and 5). In this case, we see that the
dependencies induced between the elements of p*®
are such that ignoring them tends to underestimate
the mean top event probability. The variance
approximation formula (12), in which the covariances
are ignored, likewise underestimates the variance of
the top event probability in almost all cases, especially
when the initial basic event data are weak (compare
cases 3, 4, 7 and 8 in Figs 4 and 5), and severely so
when the initial basic event data are weak and both
sources disagree (compare cases 4 and 8 in Figs 4 and
5). Finally, the mean and variance approximation
formulae, in which the covariances are ignored, give
reasonably accurate results as long as the initial basic
event data are strong relative to the top event-level
data (compare cases 1, 2, 5 and 6 of Figs 4 and 5).

4 CONCLUSIONS

A top-down methodology has been developed for
using higher-level failure data in fault tree quantifica-
tion. The method requires the identification and use of

SOK uncertainty distributions for the probabilities of
occurrence of both the initial basic and higher-level
events. Such identification and use is consistent with
the SOK distribution assumptions required in
uncertainty analysis. The top-down structure of the
model makes it relatively easy to implement in
existing fault tree quantification and uncertainty
analysis codes, such as IRRAS [4, 5].

The performance of the model is illustrated for a
simple example and performs as expected. The
combined use of higher-level data is particularly
advantageous when the initial basic event data are
weak. When the initial basic event-level data disagree
with the higher event-level data, the combined
probability estimate is essentially a weighted average
of the probability estimated from each data source
with weights proportional to the strength of each data
source.

The model involves updating and propagating only
the first two moments of SOK uncertainty distribu-
tions on event probabilities. A future task would be to
extend this to include updating the SOK distributions
themselves. Although this is a complicated analytical
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task, it can be numerically accomplished using Markov
chain simulation, also known as Markov chain Monte
Carlo [21].

Although we have exclusively considered fault tree
models, the method is also directly applicable to
networks, trees, and similar graphical models [22, 23].
In particular, the method can be used in the tree of
cliques propagation algorithm described by Almond
[22].

A major limitation of the method described in this
paper is that it only works when the higher-level data

are independent of the basic event-level probabilities. -

In particular, basic and higher event-level data from
the same series of tests or common exposure time
cannot both be simultaneously used to update the
model. On the other hand, when test or experiential
data are available simultaneously at both levels, it
provides us with an opportunity to validate the
structure of the model, particularly the completeness
and adequacy of the fault tree.
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